G3616

50 Hz

1000

10.5:1 93 32 99 CIS/A3 DRY

CATERPILLAR®

03/02

Genset

ENGINE SPEED (rpm):
COMPRESSION RATIO:
AFTERCOOLER - STAGE 1 (°C)
AFTERCOOLER - STAGE 2 (°C)
JACKET WATER OUTLET (°C)
IGNITION SYSTEM:
EXHAUST MANIFOLD:

FUEL TYPE:	Nat Gas
MIN. FUEL PRESSURE (kPag):	295
MIN. RATED METHANE NUMBER:	80
RATED ALTITUDE @ 25°C (m):	500
FUEL LHV (MJ/Nm3):	35.6
ASSUMED GENERATOR EFFICIENCY (%)	97.0
GENERATOR POWER FACTOR	0.8

RATING		NOTES	LOAD	100%	75%	50%
ENGINE POWER		(2)	bkW	3979	2984	1989
GENERATOR POWER		(2)	ekW	3859	2895	1930
ENGINE EFFICIENCY	(ISO 3046/1)	(1)	%	41.5	40.4	38.3
ENGINE EFFICIENCY	(NOMINAL)	(1)	%	40.5	39.4	37.4
		1				
ENGINE DATA						
FUEL CONSUMPTION	(ISO 3046/1)	(1)	MJ/bkW-hr	8.69	8.93	9.4
FUEL CONSUMPTION	(NOMINAL)	(1)	MJ/bkW-hr	8.9	9.14	9.62
AIR FLOW (@ 0°C, 101.3 kPaa)			Nm3/min	332	254	174
AIR MASS FLOW			kg/hr	25,746	19,726	13,471
COMPRESSOR OUTLET PRESSURE			kPa (abs)	258	201	144
COMPRESSOR OUTLET TEMPERATURE			°C	163	124	82
INLET MANIFOLD PRESSURE			kPa (abs)	248	191	136
INLET MANIFOLD TEMPERATURE			°C	42	40	38
LAMBDA				2.08	2.07	2.01
TIMING			°BTDC	18.3	18.3	18.3
EXHAUST STACK TEMPERATURE			°C	402	417	442
EXHAUST GAS FLOW (@ 0°C, 101.3 kPaa)			Nm3/min	356	273	186
EXHAUST GAS MASS FLOW			kg/hr	26,525	20,323	13,879
		1				
EMISSIONS						
NOx (corr. to 5% O2)		(3)	mg/Nm3	251	241	227
CO (corr. to 5% O2)		(3)	mg/Nm3	1320	1264	1194
THC (corr. to 5% O2, molecular weight of 15.8	4)	(3)	mg/Nm3	3633	3805	3659
NMHC (corr. to 5% O2, molecular weight of 15	5.84)	(3)	mg/Nm3	545	571	549
EXHAUST OXYGEN			%	12.0	11.8	11.5
		1				

ENERGY BALANCE DATA						
FUEL INPUT ENERGY (LHV)	(NOMINAL)	(1)	kW	9,831	7,573	5,315
WORK ENERGY	(NOMINAL)	(2)	kW	3,979	2,984	1,989
HEAT REJ. TO JACKET WATER	(NOMINAL)	(4)	kW	769	680	556
HEAT REJ. TO ATMOSPHERE	(NOMINAL)	(5)	kW	323	279	238
HEAT REJ. TO LUBE OIL	(NOMINAL)	(6)	kW	462	429	373
HEAT REJ. TO EXH. (LHV to 25°C)	(NOMINAL)	(4)	kW	3,404	2,725	1,974
HEAT REJ. TO EXH. (LHV to 120°C)	(NOMINAL)	(4)	kW	2,294	1,854	1,378
HEAT REJ. TO AFTERCOOLER STAGE 1	(NOMINAL)	(7) (8)	kW	429	146	(35)
HEAT REJ. TO AFTERCOOLER STAGE 2	(NOMINAL)	(6) (7)	kW	465	330	220

CONDITIONS AND DEFINITIONS

ENGINE RATING OBTAINED AND PRESENTED IN ACCORDANCE WITH ISO 3046/1 (STD. REF. CONDITIONS OF 25°C, 100 KPA, 152 m). NO OVERLOAD PERMITTED AT RATING SHOWN. CONSULT ALTITUDE CURVES FOR APPLICATIONS ABOVE MAXIMUM RATED ALTITUDE AND/OR TEMPERATURE.

NOTES

2) ENGINE POWER AND WORK ENERGY INCLUDE 1 ENGINE DRIVEN WATER PUMP.

3) EMISSION DATA SHOWN ARE DRY AND NOT TO EXCEED VALUES.

4) HEAT REJECTION TO JACKET AND EXHAUST TOLERANCE IS ± 10% OF FULL LOAD DATA. (heat rate based on treated water)

5) HEAT REJECTION TO ATMOSPHERE TOLERANCE IS ± 50% OF FULL LOAD DATA. (heat rate based on treated water)

6) HEAT REJECTION TO LUBE OIL TOLERANCE IS ± 20% OF FULL LOAD DATA. (heat rate based on treated water)

7) HEAT REJECTION TO AFTERCOOLER TOLERANCE IS ± 5% OF FULL LOAD DATA. (heat rate based on treated water)

8) AFTERCOOLER HEAT STAGE 1 = (A/C HEAT STAGE 1 + 0.85 x (STAGE 1 + STAGE 2) x (ACHRF - 1)) : (heat rate based on treated water) AFTERCOOLER HEAT STAGE 2 = (A/C HEAT STAGE 2 + 0.15 x (STAGE1 + STAGE 2) x (ACHRF - 1)): (heat rate based on treated water)

DM5009 03

G3616

GAS ENGINE TECHNICAL DATA

CATERPILLAR®

								1						
FUEL USAGE GUIDE														
DERATE FACTOR vs CATERPILLAR METHANE NUMBER														
Methane N	lumber	60	65	70	75	90	95	10	00					
Rating	Factor	0.00	0.89	0.93	0.96	1.00	1.00	1.00	1.00	1.0	00			
Minimum Methane Number for Full Rating =							ating =	80.0				_		
	Fuel System Limit (minimum Wobbe Index) =								MJ/Nm	3				
TOTAL DERATION FACTORS - ALTITUDE & COOLING														
	50	0.98	0.95	0.92	0.89	0.87	0.84	0.81	0.79	0.76	0.74	0.71	0.69	0.67
	45	1.00	0.97	0.94	0.91	0.88	0.85	0.83	0.80	0.77	0.75	0.73	0.70	0.68
AIR	40	1.00	0.98	0.95	0.92	0.89	0.87	0.84	0.81	0.79	0.76	0.74	0.71	0.69
то	35	1.00	1.00	0.97	0.94	0.91	0.88	0.85	0.83	0.80	0.77	0.75	0.72	0.70
TURBO	30	1.00	1.00	0.98	0.95	0.92	0.89	0.87	0.84	0.81	0.79	0.76	0.74	0.71
	25	1.00	1.00	1.00	0.97	0.94	0.91	0.88	0.85	0.83	0.80	0.77	0.75	0.72
(°C)	20	1.00	1.00	1.00	0.99	0.96	0.93	0.90	0.87	0.84	0.81	0.79	0.76	0.74
	15	1.00	1.00	1.00	1.00	0.97	0.94	0.91	0.88	0.85	0.83	0.80	0.77	0.75
	10	1.00	1.00	1.00	1.00	0.99	0.96	0.93	0.90	0.87	0.84	0.81	0.79	0.76
		0	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000
					A	ALTITUE	E (MET	ERS AB	OVE SE	A LEVEL	_)			
A	FTERC	OOLER	HEAT F	REJECT	ON FAC	TORS]						
				-				J						
	50	1.27	1.31	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36	1.36
	45	1.21	1.25	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30
AIR	40	1.15	1.19	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24

AIR	40	1.15	1.19	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24	1.24
TO	35	1.09	1.13	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18	1.18
TURBO	30	1.03	1.07	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12	1.12
	25	1.00	1.02	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06	1.06
(°C)	20	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	15	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	10	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		0	250	500	750	1000	1250	1500	1750	2000	2250	2500	2750	3000
		ALTITUDE (METERS ABOVE SEA LEVEL)												

ALLOWABLE INERTS IN THE FUEL: The maximum amount of free inerts in the fuel is limited to 5%.

FUEL SYSTEM LIMIT:

Fuels with a Wobbe index lower than the limit, require a custom fuel system and engine control system mapping from the factory. The Wobbe index is determined using the Caterpillar Methane Number Calculation program.

FUEL USAGE GUIDE:

This table shows the derate factor required for a given fuel. Note that deration occurs as the methane number decreases. Methane number is a scale to measure detonation characteristics of various fuels. The methane number of a fuel is determined by using the Caterpillar Methane Number Calculation program.

TOTAL DERATION FACTORS

This table shows the deration required for various air inlet temperatures and altitudes. Use this information along with the fuel usage guide chart to help determine actual engine power for your site. The total deration factor includes deration due to altitude and ambient temperature, and air inlet manifold temperature deration.

ACTUAL ENGINE RATING:

It is important to note that the Altitude/Temperature deration and the Fuel Usage Guide deration are not cumulative. They are not to be added together To determine the actual power available, take the lowest rating between the Altitude/Temperature Deration and the Fuel Usage Guide Deration.

GENERATOR EFFICIENCY:

Generator power determined with an assumed generator effeciency of 97% [generator power=engine power x 0.97]. If the actual generator efficiency is less than 97% [and greater than 95%], the generator power [ekW] listed in the technical data can still be achieved. The BSFC values must be increased by a factor. The factor is a percentage = 97% - actual generator efficiency [%].

EXHAUST STACK TEMPERATURE:

The exhaust stack temperature listed in the technical data is a nominal value with a tolerance = +35°C, -30°C (+63°F, -54°F)

AFTERCOOLER HEAT REJECTION FACTORS:

Aftercooler heat rejection is given for standard conditions of 25°C and 152 m altitude. To maintain a constant air inlet manifold temperature, as the air to turbo temperature goes up, so must the heat rejection. As altitude increases, the turbocharger must work harder to overcome the lower atmospheric pressure This increases the amount of heat that must be removed from the inlet air by the aftercooler. Use the aftercooler heat rejection factor to adjust for ambient and altitude conditions. Multiply this factor by the standard aftercooler heat rejection. Failure to properly account for these factors could result in detonation and cause the engine to shutdown or fail. For 2 Stage Aftercoolers with separate circuits, the 1st stage will collect 85% of the additional heat.

DM5009 03